

Home Search Collections Journals About Contact us My IOPscience

Quantised fields over de Sitter space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 795

(http://iopscience.iop.org/0305-4470/11/4/521)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:49

Please note that terms and conditions apply.

Corrigenda

Quantised fields over de Sitter space

Grensing G 1977 J. Phys. A: Math. Gen. 10 1687-719

On p 1688 formula (2.4) should read

$$g^{\dagger}Eg = E \qquad \qquad g^{\mathsf{T}}E'g = E', \tag{2.4}$$

and on p 1708 formula (9.11) should read

$$\Delta^{-}(z_{1}, z_{2}) = \frac{1}{2}i(2\pi)^{-\frac{1}{2}d}\Gamma(\frac{1}{2}(d-1)+i\rho)\Gamma(\frac{1}{2}(d-1)-i\rho)$$

$$\times [(p_{12})^{2}-1]^{-\frac{1}{4}(d-2)}P_{-\frac{1}{2}+i\rho}^{-\frac{1}{4}(d-2)}(-p_{12}(\epsilon)). \tag{9.11}$$

Furthermore, formula (11.16) on p 1713 should be replaced by

$$-2\lambda_{R} = -2\lambda + \frac{1}{2} \left(\frac{m^{2}}{4\pi}\right)^{\omega} \frac{J_{0}(\omega)}{\omega}$$

$$-2\omega(2\omega - 1)(16\pi G_{R})^{-1} = -2\omega(\omega - 1)(16\pi G)^{-1} + \frac{1}{2m^{2}} \left(\frac{m^{2}}{4\pi}\right)^{\omega} \frac{J_{1}(\omega)}{\omega - 1},$$
(11.16)

and on p 1717 formula (A.29) by

$$\tilde{\rho}_{I}(\mathring{g}) = \mathring{g} = \tilde{\rho}'_{PT}(\mathring{g}), \qquad \tilde{\rho}'_{P}(\mathring{g}) = \mathring{g}^{\dagger - 1} = \tilde{\rho}'_{T}(\mathring{g}).$$
 (A.29)

On the relation between charge and topology

Sorking R 1977 J. Phys. A: Math. Gen. 10 717-25

The third sentence of the second footnote on page 722 should be deleted. Since in § 4 $\mathcal{F}^{\mu\nu}$ is being treated as *axial*, the induced H-tensor \mathbb{E} is well defined (as an axial vector density) *independently* of any external orientation for H. (*Proof.* It is the H-dual of the pullback to H of the M-dual of $\mathcal{F}^{\mu\nu}$.) It is only for polar $\mathcal{F}^{\mu\nu}$ that \mathbb{E} is what one might call 'externally axial'.